
DISSOLVING OF A CHAIN OF DROPS (BUBBLES) IN A FLUID STREAM 

A. D. Polyanin and Yu. A. Sergeev UDC 532.7'2 

The simplest model problem of the dissolving of a chain of drops (bubbles) over which 
a stream of viscous incompressible fluid flows at low Reynolds numbers is considered. The 
dlffusional interaction of the drops due to the presence of diffusional tracks [i, 2] is 
allowed for. The radii of the drops and the dissolving rate are determined as a function 
of their position in the chain and time; the characteristic dissolving times of the drops 
are obtained. It is shown that the diffusional interaction in chains leads to significant 
slowing of the dissolving process. For a drop with the serial number k the total dissolving 
time t k is determined by the formula 

where the numbering is made from the drop traveling at the front. 

We assume that the drops (bubbles) move in the fluid one after another with a constant 
velocity U and retain a spherical shape in the process of dissolving, while at the initial 
time they have equal radii a~(0) = a (k ~el~ 2,..., M); the initial Reynolds number Re = 
=Uv-* is small, while the Peclet number aUD-* is large (9 is the coefficient of kine- 
matic viscosity and D is the coefficient of diffusion). 

The initial distribution of the fluid velocities and the concentration is determined 
by the joint solution of the steady-state Stokes and convective-diffusion equations with 
boundary conditions of constancy of the fluid velocity U and the concentration co far from 
the chain, as well as the appropriate dynamic conditions and the condition of equality of the 
concentration c, at the surfaces of the drops [3]~ We assume that the dissolving process is 
isothermal, while the concentration of the substance inside and at the surfaces of the drops 
is a constant value independent of time or the number of drops. 

The kinetics of the simple (physical) dissolving is determined by the process of con- 
vective diffusion of material toward the surfaces of the spheres [3] and is given by the 
mass-conservation law dmk/dt = Ik, where dmk/dt is the total change in the mass of the k-th 
drop per unit time; I k is the total diffusion flux to its surface. Substitution of the 
steady-state value Io for a single sphere (which, because of the large Peclet numbers, is 
determined from the solution of the corresponding diffusional boundary-layer problem [3]) 
into the conservation law shows that the characteristic time of variation of the drop radius 
is large and on the order of aU-*/-Pe. Therefore, the process of convective flow over a 
chain of drops and of its convective diffusion is quasi-steady and the radii a T =a~(t)of 

the drops vary slowly with time. This means that the procedure for solving the problem can 
be reduced to three successive stages: i) construction of a steady-state solution of the 
Stokes and convectlve-diffuslon equations for a chain of drops with radii ~; here a k are 
not fixed and play the role of parameters; 2) calculation of the total diffusion fluxes 
I k = Ik(a,, aa,..., a ) to the surfaces of the drops from the solution of the preceding 

problem~ 3) substitution of the resulting fluxes I k into the mass-conservation equations, 
which gives an independent nonlinear system of ordinary differential equations for determin- 

e 
ing the drop radii with the initial condition ak(0) = a. 

The first stage of the solution of the total problem is the most complicated, and its 
solution in the general case is unknown. It should be noted, however, that the fluid velocity 
field for a chain consisting of two drops of arbitrary radius (M = 2) was obtained in [4-6], 
while the concentration field can also be constructed with the help of [i, 2]. 
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For simplicity we assume in future that the initial distances Zk = Z between drops 
satisfy the inequality 

aO(1) < l  <:aO(]/Fe). ( l )  

The The left side of the inequality allows one to use the Stokes solution for a single 
drop, 

~p~=-fU(rh--ah)  rh 2 ~ a h  t + ~  sin 2oh, (2) 

to determine the velocity field in the vicinity of the k-th drop, with the accuracy of the 
lowest terms D where 8 is the ratio of the viscosity of the drop (Sk = 8) and that of the 
surrounding fluid, rk, 8 k is the spherical coordinate system connected with the center of 
the k-th drop; the polar angle 8 k is measured from the stream direction (the trailing crit- 
ical point)~ 

To calculate the total diffusion flux to the k-th drop, 

2~ak D sin O~d0h, 
0 

(3) 

where i(~) = i~(k)z to,j" * a2,...,* =~ ) is the total diffusional flux to the first k drops of 
the chain, one must obtain the distribution of the concentration c k in the diffusional 
boundary layer of the k-th drop, which is determined from the solution of the steady-state 
equation 

a~ha % a~aa% 
OOhOr k OrhO0 k 

8( (4) 

with boundary conditions of constancy of the concentrations of the substance far from the 
drop (c = co) and at the surface of the drop (c = c,) and the onflow condition (the boundary 
condition for the concentration taken in the diffusional boundary layer of the k-th drop). 

The right side of the inequality (i) indicates that the case under consideration cor- 
responds to the location of the k-th drop in the convective boundary-layer region of the 
diffusional track of the preceding (k -- l)-th drop [i, 2]. This in turn means that in the 
vicinity of the leading critical point of the k-th drop the concentration must be set equal 
to the concentration "at the exit" from the diffusional boundary layer of the (k - l)-th 
drop [i, 2]. 

The solution of the problem (2), (4) with the indicated boundary conditions and arbi- 
trary values of the drop radii was obtained in [2], and for the total diffusional fluxes it 
leads to the equality 

I~) ---- 4(cl--co) V 3 ([~-}- i) U1/2D1/2 (a*)  a . (5) 
';.=1 

Using the law of conservation of mass and Eqs. (3) and (5), and also considering that 
= ~ ~ ~3  �9 , 

m k /3 a k , we obtaln the followlng law determining the kinetics of the dissolving of 
drops of a chain: 

i d / k \l/S /h-1 \1/2 

(6) 
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Equation (6) is written in dimensionless variables, where a, (co -- c~), U, and T = 

~U-~Pr are chosen as the scales of the particle radii, the concentration, the velocity, 
and time, respectively. 

We sum Eq. (6) from 1 to k, 

,~.l,~/d'r = - 2 V ~ ,  

and after integration we obtain 

k 
.r~ (o) = k, j;, = ~ 4 h ) .  

�9 ,%h) = ( 1 / k ' -  ~)~. 

( 7 )  

(8) 

Using (8) we determine the law of time variation of the drop radii: 

=,(T) = (I --~p/', k = I, 

,~,~('~) = [ . / , / ' 0  - -  4 , - , ( ' 0 ]  ~/8 = [ t  - -  9 . ( 1 / ~ - -  V ~  - -  l) '~] */3, ~ t >  2. 

(9) 

From the moment the first drop dissolves (T, = i, a, (T,) = 0) the second drop becomes 
the first drop of the chain and, as follows from (9), at this time its radius is almost twice 
as small as the initial radius- a2(7,) = (/~--i)'/" = 0~ Equation (8) gives the initial 
condition for Jk(7) at T = T,, so that the kinetics of the dissolving of a chain at 71 
T~a, as(7,) -- 0, is determined by the system 

k 
3 dJk/dT = --2FY'k, Jh('%)= ( ] /k- -  i) 2, Jk = E a~ ('0. (10) 

i=z 

Similarly, by obtaining the solution of (I0) and determining 7~ and Jk(72) one can 
write the equations determining the kinetics of the system after the second drop dissolves. 
and so forth. 

Omitting the intermediate calculations, here we present only the final, most important 
results, namely, the time 7 k when the k-th drop dissolves and the radius ak+l(r k) of the 
next (k + l)-th drop at this time~ 

7~ = V~ =~+~h~) = (~%+~)~I~ = (Vk + i - V~ ~ (n) 

From this it is seen that the time interval between two successive dissolvings approach- 
es zero at large k; AT k = T k- Tk_, = ~--- ~-- l--0.5k-*/'. 

As seen from (II), the presence of a diffusional interaction in chains leads to con- 
siderable slowing of the process of dissolving of the drops; in particular, the second drop 
takes almost one and one half times longer to dissolve than the first, and at the moment the 
first one dissolves its radius is still half as large as the initial radius. 

Let us indicate the region of applicability of the results obtained: i) the results 
lose applicability when the diffusional boundary-layer approximation (4) becomes invalid, 
i.e., when the sizes of the drops decrease so much that ak(7)JPe = 0(i) is satisfied (~k(T) 
is the ratio of the current radius to the initial radius); 2) Eq. (6) is valid only so long 
as the condition 

a-*l <ak(90(~)~ Pek = =h~) Pe 

is satisfied, i.e., so long as the k-th drop is in the convective boundary-layer region of 
the diffusional track of the preceding (k -- l)-th drop [i, 2]. Violation of the latter con- 
dition means that the drop began to enter the region of mixing of the diffuslonal track of 
the preceding drop, and this, as follows from [1-2], leads to the appearance of a multiplier 
yk(7) < i to a k in Eqs. (6). 

Both restrictions are connected with the radius of any drop becoming sufficiently small. 
Because the initial Peclet number is large, however, the system (6) well describes the time 
dependence of the radius of an arbitrary k-th drop so long as ak(7) does not become too 
small, in which case the smallness of the preceding drops (of radii) a,(7),..., ak_,(Y ) 
has a weak effect on the behavior of ak(7). When Pe ~ 10s-10 ' (with aZ -I = 0.2), e.g., the 
radius of the first drop must decrease by several tens of times in comparision with the 
initial radius in order for the indicated restrictions to be satisfied. At this time, how- 
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ever, the radii of the subsequent drops exceed the radius of the first drop by more than an 
order of magnitude, so that for k~2 the term G,(T) in the equations of the system (6) can 
be neglected as small. The same thing can be said in an investigation of the behavior of 
the system near T~Ta and so forth, up to k which are not too large (the error grows in 
proportion to k). This indicates that the restrictions are reflected rather weakly in the 
final results for the radii Gk+,(Tk), where T k is determined from Eq. (ii). 

The authors thank Yu. P. Gupalo and Yu. S. Ryazantsev for useful comments. 
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DRIPPING OF A LIQUID FROM A POINT 

V. F. Dunskii and N. V. Nikitin UDC 66.069.8 

The drop discharge of a liquid under the action of gravity is frequently encountered 
in nature, and is used in technology, e.g., in medicine droppers. In a slow drop discharge 
the drops formed are of approximately the same size. The formation of drops in the discharge 
of a liquid from a vertical stationary capillary has been investigated [I, 2]. The dripping 
of a liquid from a point has received little attention. 

The formation of drops in the slow dripping of a liquid from the point of a vertical 
stationary needle whose surface is well wetted by the liquid is shown schematically in Figs. 
1 and 2. The liquid flows by gravity from the reservoir I through the annular sllt 2, and 
wets the conical surface of the needle of height H. The thickness of the layer of liquid 
increases after it flows through the slit, but not uniformly; visual observation shows that 
the liquid does not begin to accumulate at the point, but at a certain height h above it, in 
the form of a bulging collar (Fig. 2a). The thickness of the collar increases, it drops 
down (Fig. 2b), and gradually takes the form of a drop (Fig. 2c) which descends further to 
the point itself (Fig. 2d) and then quickly drips off the point (Fig. 2e) and falls down- 
ward (Fig. 2f). 

In order to explain this dripping process, we consider the pressure distribution re- 
sulting from the surface tension of the liquid within a thin layer on the surface of a con- 
ical needle. 

Forces due to the surface tension ~ act on an annular element of the surface of a con- 
ical film of height dz at a height z (Fig. 3). The resultant of the vertical components of 
these forces is 

[2~(R+dR)~--2~R~]cos ~ = 2 ~  cos ~dR. 

The resultant of the vertical components of the forces on this element as a result of 
the pressure p is pS sin~, where S = ~dl(2R+dR) is the area of the surface of the annular 
element (frustum of the cone), or, neglecting second order quantities, S = 2~RdR/sin ~ . 
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